Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation.

نویسندگان

  • Jun Li
  • Nataliya Razumilava
  • Gregory J Gores
  • Stephanie Walters
  • Tatsuki Mizuochi
  • Reena Mourya
  • Kazuhiko Bessho
  • Yui-Hsi Wang
  • Shannon S Glaser
  • Pranavkumar Shivakumar
  • Jorge A Bezerra
چکیده

Injury to the biliary epithelium triggers inflammation and fibrosis, which can result in severe liver diseases and may progress to malignancy. Development of a type 1 immune response has been linked to biliary injury pathogenesis; however, a subset of patients with biliary atresia, the most common childhood cholangiopathy, exhibit increased levels of Th2-promoting cytokines. The relationship among different inflammatory drivers, epithelial repair, and carcinogenesis remains unclear. Here, we determined that the Th2-activating cytokine IL-33 is elevated in biliary atresia patient serum and in the livers and bile ducts of mice with experimental biliary atresia. Administration of IL-33 to WT mice markedly increased cholangiocyte proliferation and promoted sustained cell growth, resulting in dramatic and rapid enlargement of extrahepatic bile ducts. The IL-33-dependent proliferative response was mediated by an increase in the number of type 2 innate lymphoid cells (ILC2s), which released high levels of IL-13 that in turn promoted cholangiocyte hyperplasia. Induction of the IL-33/ILC2/IL-13 circuit in a murine biliary injury model promoted epithelial repair; however, induction of this circuit in mice with constitutive activation of AKT and YAP in bile ducts induced cholangiocarcinoma with liver metastases. These findings reveal that IL-33 mediates epithelial proliferation and suggest that activation of IL-33/ILC2/IL-13 may improve biliary repair and disruption of the circuit may block progression of carcinogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yes-Associated Protein Regulates the Hepatic Response After Bile Duct Ligation

UNLABELLED Human chronic cholestatic liver diseases are characterized by cholangiocyte proliferation, hepatocyte injury, and fibrosis. Yes-associated protein (YAP), the effector of the Hippo tumor-suppressor pathway, has been shown to play a critical role in promoting cholangiocyte and hepatocyte proliferation and survival during embryonic liver development and hepatocellular carcinogenesis. Th...

متن کامل

Biliary exosomes influence cholangiocyte regulatory mechanisms and proliferation through interaction with primary cilia.

Exosomes are small extracellular vesicles that are thought to participate in intercellular communication. Recent work from our laboratory suggests that, in normal and cystic liver, exosome-like vesicles accumulate in the lumen of intrahepatic bile ducts, presumably interacting with cholangiocyte cilia. However, direct evidence for exosome-ciliary interaction is limited and the physiological rel...

متن کامل

Administration of r-VEGF-A prevents hepatic artery ligation-induced bile duct damage in bile duct ligated rats.

The hepatic artery, through the peribiliary plexus, nourishes the intrahepatic biliary tree. During obstructive cholestasis, the nutritional demands of intrahepatic bile ducts are increased as a consequence of enhanced proliferation; in fact, the peribiliary plexus (PBP) displays adaptive expansion. The effects of hepatic artery ligation (HAL) on cholangiocyte functions during cholestasis are u...

متن کامل

CCN1 in hepatobiliary injury repair

CCN1 (CYR61) is a secreted matricellular protein capable of regulating various cellular activities through interaction with distinct integrin receptors in a cell type-and context-dependent manner [1]. Although CCN1 is essential for cardiovascular development during embryogenesis, in adulthood its functions are associated with inflammation and wound healing [2]. Several recent studies have ident...

متن کامل

Neuropeptide Y inhibits biliary hyperplasia of cholestatic rats by paracrine and autocrine mechanisms.

Neuropeptide Y (NPY) exerts its functions through six subtypes of receptors (Y₁-Y₆). Biliary homeostasis is regulated by several factors through autocrine/paracrine signaling. NPY inhibits cholangiocarcinoma growth; however, no information exists regarding the autocrine/paracrine role of NPY on biliary hyperplasia during cholestasis. The aims of this study were to determine: 1) the expression o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 124 7  شماره 

صفحات  -

تاریخ انتشار 2014